Computing the Polar Decomposition and the Matrix Sign Decomposition in Matrix Groups
نویسندگان
چکیده
For any matrix automorphism group G associated with a bilinear or sesquilinear form, Mackey, Mackey, and Tisseur have recently shown that the matrix sign decomposition factors of A ∈ G also lie in G; moreover, the polar factors of A lie in G if the matrix of the underlying form is unitary. Groups satisfying the latter condition include the complex orthogonal, real and complex symplectic, and pseudo-orthogonal groups. This work is concerned with exploiting the structure of G when computing the polar and matrix sign decompositions of matrices in G. We give sufficient conditions for a matrix iteration to preserve the group structure and show that a family of globally convergent rational Padé-based iterations of Kenney and Laub satisfy these conditions. The well-known scaled Newton iteration for computing the unitary polar factor does not preserve group structure, but we show that the approach of the iterates to the group is precisely tethered to the approach to unitarity, and that this forces a different and exploitable structure in the iterates. A similar relation holds for the Newton iteration for the matrix sign function. We also prove that the number of iterations needed for convergence of the structure-preserving methods can be precisely predicted by running an associated scalar iteration. Numerical experiments are given to compare the cubically and quintically converging iterations with Newton’s method and to test stopping criteria. The overall conclusion is that the structure-preserving iterations and the scaled Newton iteration are all of practical interest, and which iteration is to be preferred is problem-dependent.
منابع مشابه
Finding the polar decomposition of a matrix by an efficient iterative method
Theobjective in this paper to study and present a new iterative method possessing high convergence order for calculating the polar decompostion of a matrix. To do this, it is shown that the new scheme is convergent and has high convergence. The analytical results are upheld via numerical simulations and comparisons.
متن کاملThe Matrix Sign Decomposition and Its Relation to the Polar Decomposition
The sign function of a square matrix was introduced by Roberts in 1971. We show that it is useful to regard S = sign(A) as being part of a matrix sign decomposition A = SN, where N = (A ) ’ 1/z This decomposition leads to . the new representation sign(A) = A(A2)-‘i2. Most results for the matrix sign decomposition have a counterpart for the polar decomposition A = UH, and vice versa. To illustra...
متن کاملFace Recognition Based Rank Reduction SVD Approach
Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...
متن کاملSymbolic computation of the Duggal transform
Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...
متن کاملComputing Fundamental Matrix Decompositions Accurately via the Matrix Sign Function in Two Iterations: The Power of Zolotarev's Functions
The symmetric eigenvalue decomposition and the singular value decomposition (SVD) are fundamental matrix decompositions with many applications. Conventional algorithms for computing these decompositions are suboptimal in view of recent trends in computer architectures, which require minimizing communication together with arithmetic costs. Spectral divideand-conquer algorithms, which recursively...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 25 شماره
صفحات -
تاریخ انتشار 2004